626 research outputs found

    Harmonics generation in electron-ion collisions in a short laser pulse

    Full text link
    Anomalously high generation efficiency of coherent higher field-harmonics in collisions between {\em oppositely charged particles} in the field of femtosecond lasers is predicted. This is based on rigorous numerical solutions of a quantum kinetic equation for dense laser plasmas which overcomes limitations of previous investigations.Comment: 4 pages, 4 eps-figures include

    Dispersion in a relativistic degenerate electron gas

    Full text link
    Relativistic effects on dispersion in a degenerate electron gas are discussed by comparing known response functions derived relativistically (by Jancovici) and nonrelativistically (by Lindhard). The main distinguishing feature is one-photon pair creation, which leads to logarithmic singularities in the response functions. Dispersion curves for longitudinal waves have a similar tongue-like appearance in the relativistic and nonrelativistic case, with the main relativistic effects being on the Fermi speed and the cutoff frequency. For transverse waves the nonrelativistic treatment has a nonphysical feature near the cutoff frequency for large Fermi momenta, and this is attributed to an incorrect treatment of the electron spin. We find (with two important provisos) that one-photon pair creation is allowed in superdense plasmas, implying relatively strong coupling between transverse waves and pair creation.Comment: 17 pages, 9 figures. Submitted to Physical Review

    Quantum kinetic theory of the filamentation instability

    Full text link
    The quantum electromagnetic dielectric tensor for a multi species plasma is re-derived from the gauge invariant Wigner-Maxwell system and presented under a form very similar to the classical one. The resulting expression is then applied to a quantum kinetic theory of the electromagnetic filamentation instability. Comparison is made with the quantum fluid theory including a Bohm pressure term, and with the cold classical plasma result. A number of analytical expressions are derived for the cutoff wave vector, the largest growth rate and the most unstable wave vector

    True Dielectric and Ideal Conductor in Theory of the Dielectric Function for Coulomb System

    Full text link
    On the basis of the exact relations the general formula for the static dielectric permittivity e(q,0) for Coulomb system is found in the region of small wave vectors q. The obtained formuladescribes the dielectric function e(q,0) of the Coulomb system in both states in the "metallic" state and in the "dielectric" one. The parameter which determines possible states of the Coulomb system - from the "true" dielectric till the "ideal" conductor is found. The exact relation for the pair correlation function for two-component system of electrons and nuclei g_ei(r) is found for the arbitrary thermodynamic parameters.Comment: 5 pages, no figure

    Planar Heterostructure Graphene -- Narrow-Gap Semiconductor -- Graphene

    Full text link
    We investigate a planar heterostructure composed of two graphene films separated by a narrow-gap semiconductor ribbon. We show that there is no the Klein paradox when the Dirac points of the Brillouin zone of graphene are in a band gap of a narrow-gap semiconductor. There is the energy range depending on an angle of incidence, in which the above-barrier damped solution exists. Therefore, this heterostructure is a "filter" transmitting particles in a certain range of angles of incidence upon a potential barrier. We discuss the possibility of an application of this heterostructure as a "switch".Comment: 9 pages, 2 figure

    Theory of transverse spin dynamics in a polarized Fermi liquid and an itinerant ferromagnet

    Full text link
    The linear equations for transverse spin dynamics in a weakly polarized degenerate Fermi liquid with arbitrary relationship between temperature and polarization are derived from Landau-Silin phenomenological kinetic equation with general form of two-particle collision integral. Unlike the previous treatment where Fermi velocity and density of states have been taken as constants independent of polarization here we made derivation free from this assumption. The obtained equations are applicable for description of spin dynamics in paramagnetic Fermi liquid with finite polarization as well in an itinerant ferromagnet. In both cases transverse spin wave frequency is found to be proportional to the square of the wave vector with complex constant of proportionality (diffusion coefficient) such that the damping has a finite value at T=0. The polarization dependence of the diffusion coefficient is found to be different for a polarized Fermi liquid and for an itinerant ferromagnet. These conclusions are confirmed by derivation of transverse spin wave dispersion law in frame of field theoretical methods from the integral equation for the vortex function. It is shown that similar derivation taking into consideration the divergency of static transverse susceptibility also leads to the same attenuating spin wave spectrum.Comment: 7 pages, no figure

    Boundary States in Graphene Heterojunctions

    Full text link
    A new type of states in graphene-based planar heterojunctions has been studied in the envelope wave function approximation. The condition for the formation of these states is the intersection between the dispersion curves of graphene and its gap modification. This type of states can also occur in smooth graphene-based heterojunctions.Comment: 5 pages, 3 figure

    Chiral Spin Waves in Fermi Liquids with Spin-Orbit Coupling

    Full text link
    We predict the existence of chiral spin waves collective modes in a two-dimensional Fermi liquid with the Rashba or Dresselhaus spin-orbit coupling. Starting from the phenomenological Landau theory, we show that the long-wavelength dynamics of magnetization is governed by the Klein- Gordon equations. The standing-wave solutions of these equations describe "particles" with effective masses, whose magnitudes and signs depend on the strength of the electron-electron interaction. The spectrum of the spin-chiral modes for arbitrary wavelengths is determined from the Dyson equation for the interaction vertex. We propose to observe spin-chiral modes via microwave absorption of standing waves confined by an in-plane profile of the spin-orbit splitting
    • …
    corecore